本站微信

当前位置: 首页 > 高中频道 > 高一数学知识:函数奇偶性

高一数学知识:函数奇偶性

更新时间:2019-04-23


  奇偶性
  注图:(1)为奇函数(2)为偶函数
  1.定义
  一般地,对于函数f(x)
  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
  说明:①奇、偶性是函数的整体性质,对整个定义域而言
  ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
  (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
  ③判断或证明函数是否具有奇偶性的根据是定义
  2.奇偶函数图像的特征:
  定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
  f(x)为奇函数《==》f(x)的图像关于原点对称
  点(x,y)→(-x,-y)
  奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
  偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
  3.奇偶函数运算
  (1).两个偶函数相加所得的和为偶函数.
  (2).两个奇函数相加所得的和为奇函数.
  (3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
  (4).两个偶函数相乘所得的积为偶函数.
  (5).两个奇函数相乘所得的积为偶函数.
  (6).一个偶函数与一个奇函数相乘所得的积为奇函数.
想要了解更多高中数学知识,尽在三思教育网。